Platelet-erythrocyte interactions enhance alpha(IIb)beta(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo

Activated platelets release biologically active compounds, which then recruit additional platelets into an evolving thrombus. We studied activation of alpha(IIb)beta(3) and exposure of P-selectin on platelets recruited by releasates obtained from collagen-treated platelets and evaluated modification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2002-06, Vol.99 (11), p.3978
Hauptverfasser: Vallés, Juana, Santos, M Teresa, Aznar, Justo, Martínez, Marcial, Moscardó, Antonio, Piñón, Marta, Broekman, M Johan, Marcus, Aaron J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activated platelets release biologically active compounds, which then recruit additional platelets into an evolving thrombus. We studied activation of alpha(IIb)beta(3) and exposure of P-selectin on platelets recruited by releasates obtained from collagen-treated platelets and evaluated modifications in prothrombotic effects of releasates induced by platelet-erythrocyte interactions and aspirin treatment. Releasates from collagen-stimulated platelets induced alpha(IIb)beta(3) activation and P-selectin exposure (monitored by flow cytometry using fluorescein isothiocyanate-PAC-1 and phycoerythrin-CD62 antibodies). These responses were markedly amplified by releasates from combined platelet-erythrocyte suspensions. This finding demonstrates a novel mechanism(s) by which erythrocytes intensify platelet aggregability and mediate increased platelet recruitment. Because P-selectin and alpha(IIb)beta(3) are potential sites for platelet-leukocyte interactions, erythrocytes may also modulate leukocyte recruitment. Following aspirin ingestion both the recruiting capacity of platelet releasates and erythrocyte-induced amplification of platelet recruitment were down-regulated. These events represent an additional antithrombotic property of aspirin. We also examined the possibility that arachidonic acid, or eicosanoids derived therefrom, can induce a prothrombotic activity of erythrocytes. The TXA(2)-analog U46 619 and free arachidonate, but not PGI(2) or 12-HETE, induced increases in cytosolic Ca(++) and promoted phosphatidylserine (PS) exposure on a subpopulation of erythrocytes. PS exposure and increases in erythrocyte [Ca(++)](i) are associated with enhanced procoagulant activity, increased endothelial adhesion, and reduced erythrocyte deformability. Our findings, therefore, suggest that TXA(2) and arachidonic acid, derived from activated platelets, induce a prothrombotic phenotype on erythrocytes in proximity. We conclude that by these mechanisms, erythrocytes can actively contribute to platelet-driven thrombogenesis and microvascular occlusion.
ISSN:0006-4971
DOI:10.1182/blood.v99.11.3978