Effects of chronic alcohol consumption on regulation of myocardial protein synthesis

Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 Heart disease represents an important etiology of mortality in chronic alcoholics. The purpose of the present study was to examine potential mechanisms for the inhibitory e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2001-09, Vol.281 (3), p.H1242-H1251
Hauptverfasser: Vary, Thomas C, Lynch, Christopher J, Lang, Charles H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 Heart disease represents an important etiology of mortality in chronic alcoholics. The purpose of the present study was to examine potential mechanisms for the inhibitory effect of chronic alcohol exposure (16 wk) on the regulation of myocardial protein metabolism. Chronic alcohol feeding resulted in a lower heart weight and 25% loss of cardiac protein per heart compared with pair-fed controls. The loss of protein mass resulted in part from a diminished (30%) rate of protein synthesis. Ethanol exerted its inhibition of protein synthesis through diminished translational efficiency rather than lower RNA content. Chronic ethanol administration decreased the abundance of eukaryotic initiation factor (eIF)4G associated with eIF4E in the myocardium by 36% and increased the abundance of the translation response protein (4E-BP1) associated with eIF4E. In addition, chronic alcohol feeding significantly reduced the extent of p70S6 kinase (p70 S6K ) phosphorylation. The decreases in the phosphorylation of 4E-BP1 and p70 S6K did not result from a reduced abundance of mammalian target of rapamycin (mTOR). These data suggest that a chronic alcohol-induced impairment in myocardial protein synthesis results in part from inhibition in peptide chain initiation secondary to marked changes in eIF4E availability and p70 S6K phosphorylation. cardiomyopathy; peptide chain initiation; eukaryotic initiation factor 4E; 4E-BP1; eukaryotic initiation factor 4G; heart; translational efficiency; p70 S6K ; mTOR
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.2001.281.3.H1242