Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons
C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 2001-08, Vol.86 (2), p.629 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Na(v)1.8 (+/+) and (-/-) small DRG neurons maintained for 2-8 h in vitro to examine the role of sodium channel Na(v)1.8 (alpha-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Na(v)1.8 (+/+) and (-/-) DRG neurons, there were significant differences in action potential electrogenesis. Most Na(v)1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Na(v)1.8 (-/-) neurons produce smaller graded responses. The peak of the response was significantly reduced in Na(v)1.8 (-/-) neurons [31.5 +/- 2.2 (SE) mV] compared with Na(v)1.8 (+/+) neurons (55.0 +/- 4.3 mV). The maximum rise slope was 84.7 +/- 11.2 mV/ms in Na(v)1.8 (+/+) neurons, significantly faster than in Na(v)1.8 (-/-) neurons where it was 47.2 +/- 1.3 mV/ms. Calculations based on the action potential overshoot in Na(v)1.8 (+/+) and (-/-) neurons, following blockade of Ca(2+) currents, indicate that Na(v)1.8 contributes a substantial fraction (80-90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na(+) channels can produce all-or-none action potentials in some Na(v)1.8 (-/-) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Na(v)1.8 (-/-) neurons is more sensitive to membrane depolarization than in Na(v)1.8 (+/+) neurons, and, in the absence of Na(v)1.8, is attenuated with even modest depolarization. These observations indicate that Na(v)1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons. |
---|---|
ISSN: | 0022-3077 |
DOI: | 10.1152/jn.2001.86.2.629 |