CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity

Radiation is an effective means of treating localized prostate cancer. However, up to 40% of men with certain risk factors will develop biochemical failure 5 years after radiotherapy. CV706, a prostate cell-specific adenovirus variant, is currently in clinical trials for the treatment of recurrent o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2001-07, Vol.61 (14), p.5453-5460
Hauptverfasser: YU CHEN, DEWEESE, Theodore, BRIGNETTI, Dominic, SCOTT, Sara, STEPHENS, Jennifer, KARPF, David B, HENDERSON, Daniel R, YU, De-Chao, DILLEY, Jeanette, YIWEI ZHANG, YUANHAO LI, RAMESH, Nagarajan, LEE, Jake, PENNATHUR-DAS, Rukmini, RADZYMINSKI, John, WYPYCH, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiation is an effective means of treating localized prostate cancer. However, up to 40% of men with certain risk factors will develop biochemical failure 5 years after radiotherapy. CV706, a prostate cell-specific adenovirus variant, is currently in clinical trials for the treatment of recurrent organ-confined prostate cancer. We demonstrated previously that a single administration of CV706 at 5 x 10(8) particles/mm3 of tumor eliminated established tumors within 6 weeks in nude mouse xenografts (Rodriguez et al., Cancer Res. 57: 2559-2563, 1997). We now demonstrate that CV706-mediated cytotoxicity is synergistic with radiation. In vitro, addition of radiation to CV706 resulted in a synergistic increase of cytotoxicity toward the human prostate cancer cell line LNCaP and a significant increase of virus burst size, with no reduction in specificity of CV706-based cytopathogenicity for prostate cancer cells. In vivo, prostate-specific antigen (+) LNCaP xenografts of human prostate cancer were treated with CV706 (1 x 10(7) particles/mm3 of tumor), 10 Gy of single fraction local tumor radiation, or both. Tumor volumes of the group treated with CV706 or radiation was 97% or 120% of baseline 6 weeks after treatment. However, when the same dose of CV706 was followed 24 h later with the same dose of radiation, the tumor volume dropped to 4% of baseline at this time point and produced antitumor activity that was 6.7-fold greater than a predicted additive effect of CV706 and radiation. Histological analyses of tumors revealed that, compared with CV706 or radiation alone, combination treatment with two agents increased necrosis by 180% and 690%, apoptosis by 330% and 880%, and decreased blood vessel number by 1290% and 600%, respectively. Importantly, no increase in toxicity was observed after combined treatment when compared with CV706 or radiation alone. These data demonstrate that CV706 enhances the in vivo radioresponse of prostate tumors and support the clinical development of CV706 as a neoadjuvant agent with radiation for localized prostate cancer.
ISSN:0008-5472
1538-7445