Effects of low-frequency pulsed electromagnetic fields on the proliferation of chondrocytes
Chondrocytes isolated from the human cartilage of 5 patients between the ages 23 and 56 were exposed to low frequency pulsed electromagnetic fields (9 mT; 3 Hz) for a daily period of 60 minutes on 5 consecutive days and then every 48 hours for the next 6 days (11 days in total). Cell viability was e...
Gespeichert in:
Veröffentlicht in: | Sportverletzung, Sportschaden Sportschaden, 2001-03, Vol.15 (1), p.22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | ger |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chondrocytes isolated from the human cartilage of 5 patients between the ages 23 and 56 were exposed to low frequency pulsed electromagnetic fields (9 mT; 3 Hz) for a daily period of 60 minutes on 5 consecutive days and then every 48 hours for the next 6 days (11 days in total). Cell viability was estimated using trypan blue exclusion and proliferation was estimated by counting the cells in a haemacytometer. Cell morphology was compared for control purposes by directly observing the cells under a light microscope after staining cells in a haematoxylin and eosin solution. The results were statistically analysed and compared to a control sample. Data revealed that exposing cells isolated from human cartilage to pulsed electromagnetic fields (9 mT; 3 Hz) led to a significantly higher number of cells in comparison to the control sample. Among the cells from the 5 patients, growth varied between 1.1 to 3.0 folds compared to the control sample. The difference in cell viability between the exposed cells and the control sample was, however, not significant. Some morphological variations were revealed when the cells were observed under a light microscope. The exposed cells were thinner and longer than the control cells which were large and flat. The exposed cells tended to grow in a more uniform direction while the control cells grew in all directions. These differences in morphology and growth may be related to the higher density of the exposed cells. |
---|---|
ISSN: | 0932-0555 |