A subunit of the mammalian oligosaccharyltransferase, DAD1, interacts with Mcl-1, one of the bcl-2 protein family
DAD1 is a mammalian homologue of Saccharomyces cerevisiae Ost2p, a subunit of the oligosaccharyltransferase complex. Loss of its function induces apoptosis in hamster BHK21 cells. By means of a two-hybrid method involving DAD1 as bait, the C-terminal region of Mcl-1, one of the bcl-2 family, was iso...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 2000-09, Vol.128 (3), p.399 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DAD1 is a mammalian homologue of Saccharomyces cerevisiae Ost2p, a subunit of the oligosaccharyltransferase complex. Loss of its function induces apoptosis in hamster BHK21 cells. By means of a two-hybrid method involving DAD1 as bait, the C-terminal region of Mcl-1, one of the bcl-2 family, was isolated. Consistently, DAD1 binds well to Mcl-1 in COS cells when overexpressed. On deletion analysis, the C-terminal domain of Mcl-1 containing BH(2) (bcl-2 homologous domain) was found to be essential for the interaction with DAD1. On the other hand, the C-terminal half of DAD1 was concluded to be essential for the interaction with Mcl-1. Surprisingly, a DeltaC-DAD1 mutant lacking only 4 amino acid residues from the C-terminus did not complement the tsBN7 mutation, while it interacted well with Mcl-1. In contrast, DeltaN-DAD1 lacking 20 amino acid residues from the N-terminus still exhibited the ability to complement the tsBN7 mutation. Thus, the C-terminus of DAD1 was suggested to play an important role in N-linked glycosylation and to complement the tsBN7 mutation. Mcl-1 may be required for the inhibition of apoptotic cell death caused by a loss of DAD1. |
---|---|
ISSN: | 0021-924X |
DOI: | 10.1093/oxfordjournals.jbchem.a022767 |