Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc
Abeta binds Zn(2+), Cu(2+), and Fe(3+) in vitro, and these metals are markedly elevated in the neocortex and especially enriched in amyloid plaque deposits of individuals with Alzheimer's disease (AD). Zn(2+) precipitates Abeta in vitro, and Cu(2+) interaction with Abeta promotes its neurotoxic...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-06, Vol.275 (26), p.19439 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abeta binds Zn(2+), Cu(2+), and Fe(3+) in vitro, and these metals are markedly elevated in the neocortex and especially enriched in amyloid plaque deposits of individuals with Alzheimer's disease (AD). Zn(2+) precipitates Abeta in vitro, and Cu(2+) interaction with Abeta promotes its neurotoxicity, correlating with metal reduction and the cell-free generation of H(2)O(2) (Abeta1-42 > Abeta1-40 > ratAbeta1-40). Because Zn(2+) is redox-inert, we studied the possibility that it may play an inhibitory role in H(2)O(2)-mediated Abeta toxicity. In competition to the cytotoxic potentiation caused by coincubation with Cu(2+), Zn(2+) rescued primary cortical and human embryonic kidney 293 cells that were exposed to Abeta1-42, correlating with the effect of Zn(2+) in suppressing Cu(2+)-dependent H(2)O(2) formation from Abeta1-42. Since plaques contain exceptionally high concentrations of Zn(2+), we examined the relationship between oxidation (8-OH guanosine) levels in AD-affected tissue and histological amyloid burden and found a significant negative correlation. These data suggest a protective role for Zn(2+) in AD, where plaques form as the result of a more robust Zn(2+) antioxidant response to the underlying oxidative attack. |
---|---|
ISSN: | 0021-9258 |