A Rho-related GTPase is involved in Ca(2+)-dependent neurotransmitter exocytosis

Rho, Rac, and Cdc42 monomeric GTPases are well known regulators of the actin cytoskeleton and phosphoinositide metabolism and have been implicated in hormone secretion in endocrine cells. Here, we examine their possible implication in Ca(2+)-dependent exocytosis of neurotransmitters. Using subcellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-03, Vol.275 (11), p.7764
Hauptverfasser: Doussau, F, Gasman, S, Humeau, Y, Vitiello, F, Popoff, M, Boquet, P, Bader, M F, Poulain, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rho, Rac, and Cdc42 monomeric GTPases are well known regulators of the actin cytoskeleton and phosphoinositide metabolism and have been implicated in hormone secretion in endocrine cells. Here, we examine their possible implication in Ca(2+)-dependent exocytosis of neurotransmitters. Using subcellular fractionation procedures, we found that RhoA, RhoB, Rac1, and Cdc42 are present in rat brain synaptosomes; however, only Rac1 was associated with highly purified synaptic vesicles. To determine the synaptic function of these GTPases, toxins that impair Rho-related proteins were microinjected into Aplysia neurons. We used lethal toxin from Clostridium sordellii, which inactivates Rac; toxin B from Clostridium difficile, which inactivates Rho, Rac, and Cdc42; and C3 exoenzyme from Clostridium botulinum and cytotoxic necrotizing factor 1 from Escherichia coli, which mainly affect Rho. Analysis of the toxin effects on evoked acetylcholine release revealed that a member of the Rho family, most likely Rac1, was implicated in the control of neurotransmitter release. Strikingly, blockage of acetylcholine release by lethal toxin and toxin B could be completely removed in
ISSN:0021-9258
DOI:10.1074/jbc.275.11.7764