The Polyelectrolyte Behavior of Actin Filaments:  A 25Mg NMR Study

Under physiological conditions, filamentous actin (F-actin) is a polyanionic protein filament. Key features of the behavior of F-actin are shared with other well-characterized polyelectrolytes, in particular, duplex DNA. For example, the bundle formation of F-actin by polyvalent cations, including d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1999-06, Vol.38 (22), p.7219-7226
Hauptverfasser: Xian, Wujing, Tang, Jay X, Janmey, Paul A, Braunlin, William H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under physiological conditions, filamentous actin (F-actin) is a polyanionic protein filament. Key features of the behavior of F-actin are shared with other well-characterized polyelectrolytes, in particular, duplex DNA. For example, the bundle formation of F-actin by polyvalent cations, including divalent metal ions such as Mg2+, has been proposed to be a natural consequence of the polyelectrolyte nature of actin filaments [Tang and Janmey (1996) J. Biol. Chem. 271, 8556−8563]. This recently proposed model also suggests that weak interactions between F-actin and Mg2+ ions reflect a nonspecific trapping of counterions in the electric field surrounding F-actin due to its polyelectrolyte nature. To test this hypothesis, we have performed 25Mg NMR measurements in F-actin solutions. Based on the NMR data, we estimate that the rotational correlation times of Mg2+ are independent of the overall rotational dynamics of the actin filaments. Moreover, competitive binding experiments demonstrate a facile displacement of F-actin-bound Mg2+ by Co(NH3)6 3+. At higher Co(NH3)6 3+ concentrations, a fraction of the magnesium ions are trapped as actin filaments aggregate. ATP also competes effectively with actin filaments for binding to Mg2+. These results support the hypothesis that magnesium ions bind loosely and nonspecifically to actin filaments, and thus show a behavior typical of counterions in polyelectrolyte solutions. The observed features mimic to some extent the well-documented behavior of counterions in DNA solutions.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi982301f