The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films

Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2012-04, Vol.336 (6077), p.52-55
Hauptverfasser: WANG, Mei-Xiao, CANHUA LIU, XU, Zhu-An, YING LIU, ZHANG, Shou-Cheng, DONG QIAN, JIA, Jin-Feng, XUE, Qi-Kun, XU, Jin-Peng, FANG YANG, LIN MIAO, YAO, Meng-Yu, GAO, C. L, CHENYI SHEN, XUCUN MA, CHEN, X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The interplay between topological order and symmetry breaking, such as that observed in superconductivity, can lead to new quantum phenomena and devices. We fabricated a superconducting TI/superconductor heterostructure by growing dibismuth triselenide (Bi(2)Se(3)) thin films on superconductor niobium diselenide substrate. Using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we observed the superconducting gap at the Bi(2)Se(3) surface in the regime of Bi(2)Se(3) film thickness where topological surface states form. This observation lays the groundwork for experimentally realizing Majorana fermions in condensed matter physics.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1216466