Ground and low-lying excited states of propadienylidene (H 2 C=C=C:) obtained by negative ion photoelectron spectroscopy
A joint experimental-theoretical study has been carried out on electronic states of propadienylidene (H 2 CCC), using results from negative-ion photoelectron spectroscopy. In addition to the previously characterized \documentclass[12pt]{minimal}\begin{document}${\tilde{X}}^1A_1$\end{document} X ̃ 1...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2012-04, Vol.136 (13), p.134312-134312-16 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A joint experimental-theoretical study has been carried out on electronic states of propadienylidene (H
2
CCC), using results from negative-ion photoelectron spectroscopy. In addition to the previously characterized
\documentclass[12pt]{minimal}\begin{document}${\tilde{X}}^1A_1$\end{document}
X
̃
1
A
1
electronic state, spectroscopic features are observed that belong to five additional states: the low-lying
\documentclass[12pt]{minimal}\begin{document}${\tilde{a}}^3B_1$\end{document}
a
̃
3
B
1
and
\documentclass[12pt]{minimal}\begin{document}${\tilde{b}}^3A_2$\end{document}
b
̃
3
A
2
states, as well as two excited singlets,
\documentclass[12pt]{minimal}\begin{document}${\tilde{A}}^1A_2$\end{document}
A
̃
1
A
2
and
\documentclass[12pt]{minimal}\begin{document}${\tilde{B}}^1B_1$\end{document}
B
̃
1
B
1
, and a higher-lying triplet,
\documentclass[12pt]{minimal}\begin{document}${\tilde{c}}^3A_1$\end{document}
c
̃
3
A
1
. Term energies (
T
0
, in cm
−1
) for the excited states obtained from the data are: 10354±11 (
\documentclass[12pt]{minimal}\begin{document}${\tilde{a}}^3B_1$\end{document}
a
̃
3
B
1
); 11950±30 (
\documentclass[12pt]{minimal}\begin{document}${\tilde{b}}^3A_2$\end{document}
b
̃
3
A
2
); 20943±11 (
\documentclass[12pt]{minimal}\begin{document}${\tilde{c}}^3A_1$\end{document}
c
̃
3
A
1
); and 13677±11 (
\documentclass[12pt]{minimal}\begin{document}${\tilde{A}}^1A_2$\end{document}
A
̃
1
A
2
). Strong vibronic coupling affects the
\documentclass[12pt]{minimal}\begin{document}${\tilde{A}}^1A_2$\end{document}
A
̃
1
A
2
and
\documentclass[12pt]{minimal}\begin{document}${\tilde{B}}^1B_1$\end{document}
B
̃
1
B
1
states as well as
\documentclass[12pt]{minimal}\begin{document}${\tilde{a}}^3B_1$\end{document}
a
̃
3
B
1
and
\documentclass[12pt]{minimal}\begin{document}${\tilde{b}}^3A_2$\end{document}
b
̃
3
A
2
and has profound effects on the spectrum. As a result, only a weak, broadened band is observed in the energy region where the origin of the
\documentclass[12pt]{minimal}\begin{document}${\tilde{B}}^1B_1$\end{document}
B
̃
1
B
1
state is expected. The assignments here are supported by high-level coupled-cluster calculations and spectral simulations based on a vibronic coupling Hamiltonian. A result of astrophysical interest is that the present study supports the idea that a broad absorption band found at 5450 Å by cavity ringdown spectroscopy (and coincident with a diffuse interstellar band) is carried by the
\documentclass[12pt]{minimal}\begin{docum |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3696896 |