Harnessing aptamers for electrochemical detection of endotoxin

Lipopolysaccharide (LPS), also known as endotoxin, triggers a fatal septic shock; therefore, fast and accurate detection of LPS from a complex milieu is of primary importance. Several LPS affinity binders have been reported so far but few of them have proved their efficacy in developing electrochemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 2012-05, Vol.424 (1), p.12-20
Hauptverfasser: Kim, Sung-Eun, Su, Wenqiong, Cho, MiSuk, Lee, Youngkwan, Choe, Woo-Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipopolysaccharide (LPS), also known as endotoxin, triggers a fatal septic shock; therefore, fast and accurate detection of LPS from a complex milieu is of primary importance. Several LPS affinity binders have been reported so far but few of them have proved their efficacy in developing electrochemical sensors capable of selectively detecting LPS from crude biological liquors. In this study, we identified 10 different single-stranded DNA aptamers showing specific affinity to LPS with dissociation constants (Kd) in the nanomolar range using a NECEEM-based non-SELEX method. Based on the sequence and secondary structure analysis of the LPS binding aptamers, an aptamer exhibiting the highest affinity to LPS (i.e., B2) was selected to construct an impedance biosensor on a gold surface. The developed electrochemical aptasensor showed excellent sensitivity and specificity in the linear detection range from 0.01 to 1ng/mL of LPS with significantly reduced detection time compared with the traditional Limulus amoebocyte lysate (LAL) assay.
ISSN:0003-2697
1096-0309
DOI:10.1016/j.ab.2012.02.016