Omentin-1 exerts bone-sparing effect in ovariectomized mice

Summary Omentin-1 inhibited osteoblast differentiation in vitro. In co-culture systems of osteoblasts and osteoclast precursors, omentin-1 reduced osteoclast formation by stimulating osteoprotegerin (OPG) and inhibiting receptor activator for nuclear factor κB ligand (RANKL) production in osteoblast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2012-04, Vol.23 (4), p.1425-1436
Hauptverfasser: Xie, H., Xie, P.-L., Luo, X.-H., Wu, X.-P., Zhou, H.-D., Tang, S.-Y., Liao, E.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Omentin-1 inhibited osteoblast differentiation in vitro. In co-culture systems of osteoblasts and osteoclast precursors, omentin-1 reduced osteoclast formation by stimulating osteoprotegerin (OPG) and inhibiting receptor activator for nuclear factor κB ligand (RANKL) production in osteoblasts. In vivo, adenovirus-mediated overexpression of omentin-1 suppressed bone turnover and restored bone mineral density (BMD) and bone strength in ovariectomized mice. Introduction Omentin-1 (also intelectin-1) is a recently identified visceral adipose tissue-derived cytokine that is highly abundant in plasma. This study was undertaken to investigate the effects of omentin-1 on bone metabolism. Methods Osteoblast differentiation was assessed by measuring alkaline phosphatase activity, osteocalcin production and matrix mineralization. OPG and RANKL protein expression and secretion in osteoblasts were detected by Western blot and ELISA, respectively. The effect of recombinant omentin-1 on osteoclast formation was examined in co-culture systems of osteoblasts and osteoclast precursors. The effects of intravenous administration of adenoviral-delivered omentin-1 on bone mass, bone strength, and bone turnover were also examined in ovariectomized mice. Results In vitro, omentin-1 inhibited osteoblast differentiation, while it had no direct effect on osteoclast differentiation; it also reduced osteoclast formation in the co-culture systems through stimulating OPG and inhibiting RANKL production in osteoblasts. In vivo, adenovirus-mediated overexpression of omentin-1 partially restored BMD and bone strength in ovariectomized mice, accompanied by decreased levels of plasma osteocalcin and tartrate-resistant acid phosphatase-5b and lower serum RANKL/OPG ratios. Conclusion The present study suggests that omentin-1 ameliorates bone loss induced by estrogen deficiency via downregulating the RANKL/OPG ratio.
ISSN:0937-941X
1433-2965
DOI:10.1007/s00198-011-1697-8