Evidence of Bioactivation of Halomethanes and its Relation to Oxidative Stress Response in Chirostoma riojai, an Endangered Fish from a Polluted Lake in Mexico
Halomethanes (HMs) are produced autochthonously in water bodies through the action of ultraviolet light in the presence of HM precursors, such as dissolved organic carbon and halogens. In mammals, toxic effects induced by HMs are diverse and include oxidative stress, which is also induced by divalen...
Gespeichert in:
Veröffentlicht in: | Archives of environmental contamination and toxicology 2012-04, Vol.62 (3), p.479-493 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Halomethanes (HMs) are produced autochthonously in water bodies through the action of ultraviolet light in the presence of HM precursors, such as dissolved organic carbon and halogens. In mammals, toxic effects induced by HMs are diverse and include oxidative stress, which is also induced by divalent and polyvalent metals; however, in fish little information is available on HM metabolism and its possible consequences at the population level. In the present study, high CYP 2E1 and GST
theta
-like activities were found in viscera of the Toluca silverside
Chirostoma riojai
from Lake Zumpango (LZ; central Mexico). Formaldehyde, one of the HM metabolites, was correlated with CYP 2E1 activity and also induced lipid peroxidation in viscera. Hepatic CYP 2E1 activity was correlated with GST
theta
-like activity, suggesting the coupling of both pathways of HM bioactivation and its consequent oxidative damage. Sediment metals, among others, were also responsible for oxidative stress, particularly iron, lead, arsenic and manganese. However, under normal environmental conditions, the antioxidant enzymes of this species sustain catalysis adapted to oxidative stress. Findings suggest that this fish species apparently has mechanisms of adaptation and recovery that enable it to confront toxic agents of natural origin, such as metals and other substances formed through natural processes, e.g., HMs. This has allowed
C. riojai
to colonize LZ despite the high sensitivity of this species to xenobiotics of anthropogenic origin. |
---|---|
ISSN: | 0090-4341 1432-0703 |
DOI: | 10.1007/s00244-011-9708-5 |