Incidence-Angle Dependency of TRMM PR Rain Estimates
The incidence-angle differences of estimated surface rainfall obtained from the precipitation radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite were investigated. The bias before the orbit boost in August 2001 relative to the near-nadir statistics was 2.7% over the ocean a...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2012-02, Vol.29 (2), p.192-206 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incidence-angle differences of estimated surface rainfall obtained from the precipitation radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite were investigated. The bias before the orbit boost in August 2001 relative to the near-nadir statistics was 2.7% over the ocean and −5.8% over land. After the boost, the bias was −3.2% and −9.5%, respectively. These biases were further quantified with respect to error sources, that is, the beam mismatch correction error, detection capability of storms with low-level storm-top height, and residual effects. For shallow storms lower than 3 km, most incidence-angle differences were caused by main lobe contamination. For nonshallow storms, several error factors resulted in 5.3% overestimates over the ocean and 5.1% underestimates over land for the period before the boost. The remaining uncertainty in local low-level profiles was identified as a controversial issue.
The bias-corrected dataset updates the interannual variation in rainfall obtained from the TRMM PR. The increasing rainfall features and recent high-rainfall years were consistent with prior studies based on other microwave sensors. The coherent signals and slight differences in the temporal variation compared with the Global Precipitation Climatology Project (GPCP) data indicate the importance of further internal and cross validations based on long-term observation by multiple sensors. |
---|---|
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/JTECH-D-11-00067.1 |