Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene

Graphene, a two-dimensional layer of carbon atoms, is a promising building block for a wide range of optoelectronic devices owing to its extraordinary electrical and optical properties, including the ability to absorb ~2% of incident light over a broad wavelength range. While the RC-limited bandwidt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-01, Vol.3 (1), p.646-646
Hauptverfasser: Prechtel, Leonhard, Song, Li, Schuh, Dieter, Ajayan, Pulickel, Wegscheider, Werner, Holleitner, Alexander W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene, a two-dimensional layer of carbon atoms, is a promising building block for a wide range of optoelectronic devices owing to its extraordinary electrical and optical properties, including the ability to absorb ~2% of incident light over a broad wavelength range. While the RC-limited bandwidth of graphene-based photodetectors can be estimated to be as large as 640 GHz, conventional electronic measurement techniques lack for analysing photocurrents at such frequencies. Here we report on time-resolved picosecond photocurrents in freely suspended graphene contacted by metal electrodes. At the graphene–metal interface, we demonstrate that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of ~4 ps and that a photothermoelectric effect generates a current with a decay time of ~130 ps. Furthermore, we show that, in optically pumped graphene, electromagnetic radiation up to 1 THz is generated. Our results may prove essential to build graphene-based ultrafast photodetectors, photovoltaic cells and terahertz sources. Graphene's broad bandwidth makes it promising as a photodetector, but common electronics cannot analyse the currents at high frequencies. Here, using photocurrent measurements, laser-induced carrier generation effects in freely suspended graphene and at graphene–metal interfaces are clarified up to 1 THz.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1656