Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene
Graphene, a two-dimensional layer of carbon atoms, is a promising building block for a wide range of optoelectronic devices owing to its extraordinary electrical and optical properties, including the ability to absorb ~2% of incident light over a broad wavelength range. While the RC-limited bandwidt...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-01, Vol.3 (1), p.646-646 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene, a two-dimensional layer of carbon atoms, is a promising building block for a wide range of optoelectronic devices owing to its extraordinary electrical and optical properties, including the ability to absorb ~2% of incident light over a broad wavelength range. While the RC-limited bandwidth of graphene-based photodetectors can be estimated to be as large as 640 GHz, conventional electronic measurement techniques lack for analysing photocurrents at such frequencies. Here we report on time-resolved picosecond photocurrents in freely suspended graphene contacted by metal electrodes. At the graphene–metal interface, we demonstrate that built-in electric fields give rise to a photocurrent with a full-width-half-maximum of ~4 ps and that a photothermoelectric effect generates a current with a decay time of ~130 ps. Furthermore, we show that, in optically pumped graphene, electromagnetic radiation up to 1 THz is generated. Our results may prove essential to build graphene-based ultrafast photodetectors, photovoltaic cells and terahertz sources.
Graphene's broad bandwidth makes it promising as a photodetector, but common electronics cannot analyse the currents at high frequencies. Here, using photocurrent measurements, laser-induced carrier generation effects in freely suspended graphene and at graphene–metal interfaces are clarified up to 1 THz. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms1656 |