Recommended Design Fatigue Factors for Reassessment of Piles Subjected to Dynamic Actions From Driving
Calculated probabilities of fatigue failure depend on the analysis procedure used for design. Calculated probabilities of a fatigue failure also depend on long term stress ranges due to loading and uncertainties associated with this. In order to ensure the consistent safety level for assessment of f...
Gespeichert in:
Veröffentlicht in: | Journal of offshore mechanics and Arctic engineering 2010-11, Vol.132 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Calculated probabilities of fatigue failure depend on the analysis procedure used for design. Calculated probabilities of a fatigue failure also depend on long term stress ranges due to loading and uncertainties associated with this. In order to ensure the consistent safety level for assessment of fatigue failure, the design fatigue factors (DFFs) to be used for fatigue design should be dependent on the analysis procedure and premises used. In the present paper, an assessment of appropriate DFFs for piles subjected to dynamic actions from pile driving has been performed by probabilistic analysis based on: uncertainty with respect to dynamic cyclic stress during pile driving, and fatigue capacity of circumferential welds in piles. Accumulated probabilities of fatigue failures in pile butt welds are presented. An assessment of uncertainties involved in calculation of stress ranges during pile driving has been performed. It is shown that the uncertainty in loading when driving records are known is lower than that estimated on the basis of soil data. Thus, in order to obtain consistent safety levels, different DFFs should be used when calculated stress ranges are derived based on soil data only, as compared with the actual stress ranges and number of blows determined from driving records. The results from probabilistic analyses together with recommended design fatigue factors are presented in this paper. |
---|---|
ISSN: | 0892-7219 1528-896X |
DOI: | 10.1115/1.4001418 |