The co-culture of Acidithiobacillus ferrooxidans and Acidiphilium acidophilum enhances the growth, iron oxidation, and CO sub(2) fixation
Although the synergetic interactions between chemolithoautotroph Acidithiobacillus ferrooxidans and heterotroph Acidiphilium acidophilum have drawn a share of attention, the influence of Aph. acidophilum on growth and metabolic functions of At. ferrooxidans is still unknown on transcriptional level....
Gespeichert in:
Veröffentlicht in: | Archives of microbiology 2011-12, Vol.193 (12), p.857-866 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although the synergetic interactions between chemolithoautotroph Acidithiobacillus ferrooxidans and heterotroph Acidiphilium acidophilum have drawn a share of attention, the influence of Aph. acidophilum on growth and metabolic functions of At. ferrooxidans is still unknown on transcriptional level. To assess this influence, a co-culture composed by At. ferrooxidans and Aph. acidophilum was successfully acclimated in this study. Depending on the growth dynamics, At. ferrooxidans in co-culture had 2 days longer exponential phase and 5 times more cell number than that in pure culture. The ferrous iron concentration in culture medium and the expression of iron oxidation-related genes revealed that the energy acquisition of At. ferrooxidans in co-culture was more efficient than that in pure culture. Besides, the analysis of CO sub(2) fixation-related genes in At. ferrooxidans indicated that the second copy of RuBisCO-encoding genes cbbLS-2 and the positive regulator-encoding gene cbbR were up-regulated in co-culture system. All of these results verified that Aph. acidophilum could heterotrophically grow with At. ferrooxidans and promote the growth of it. By means of activating iron oxidation-related genes and the second set of cbbLS genes in At. ferrooxidans, the Aph. acidophilum facilitated the iron oxidation and CO sub(2) fixation by At. ferrooxidans. |
---|---|
ISSN: | 0302-8933 1432-072X |
DOI: | 10.1007/s00203-011-0723-8 |