Advection-Based Adjustment of Radar Measurements

When making radar-based precipitation products, a radar measurement is commonly taken to represent the geographical location vertically below the contributing volume of the measurement sample. However, when wind is present during the fall of the hydrometeors, precipitation will be displaced horizont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2012-03, Vol.140 (3), p.1014-1022
Hauptverfasser: LAURI, Tuomo, KOISTINEN, Jarmo, MOISSEEV, Dmitri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When making radar-based precipitation products, a radar measurement is commonly taken to represent the geographical location vertically below the contributing volume of the measurement sample. However, when wind is present during the fall of the hydrometeors, precipitation will be displaced horizontally from the geographical location of the radar measurement. Horizontal advection will introduce discrepancies between the radar-measured and ground level precipitation fields. The significance of the adjustment depends on a variety of factors related to the characteristics of the observed precipitation as well as those of the desired end product. In this paper the authors present an advection adjustment scheme for radar precipitation observations using estimated hydrometeor trajectories obtained from the High-Resolution Limited-Area Model (HIRLAM) MB71 NWP model data. They use the method to correct the operational Finnish radar composite and evaluate the significance of precipitation advection in typical Finnish conditions. The results show that advection distances on the order of tens of kilometers are consistently observed near the edge of the composite at ranges of 100-250 km from the nearest radar, even when using a low elevation angle of 0.3 degree . The Finnish wind climatology suggests that approximately 15% of single radar measurement areas are lost on average when estimating ground level rainfall if no advection adjustment is applied. For the Finnish composite, area reductions of approximately 10% have been observed, while the measuring area is extended downstream by a similar amount. Advection becomes increasingly important at all ranges in snowfall with maximum distances exceeding 100 km.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-11-00045.1