Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae
The Saccharomyces cerevisiae Yvh1, a dual-specificity protein phosphatase involved in glycogen accumulation and sporulation, is required for normal vegetative growth. To further elucidate the role of Yvh1, we generated dominant mutants suppressing the slow growth caused by YVH1 disruption. One of th...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 2011-07, Vol.150 (1), p.103-111 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Saccharomyces cerevisiae Yvh1, a dual-specificity protein phosphatase involved in glycogen accumulation and sporulation, is required for normal vegetative growth. To further elucidate the role of Yvh1, we generated dominant mutants suppressing the slow growth caused by YVH1 disruption. One of the mutant alleles, designated as SVH1-1 (suppressor of Δyvh1
deletion), was identical to MRT4 (mRNA turnover) that contained a single-base substitution causing an amino acid change from Gly68 to Asp. Mrt4(G68D) restored the deficiencies in growth and rRNA biogenesis that occurs in absence of Yvh1. Here, we report that the interaction between Mrt4 and Yvh1 is also essential for normal glycogen accumulation and mRNA decay as well as the induction of sporulation genes IME2, SPO13 and HOP1. The Mrt4(G68D) could restore the plethora of phenotypes we observed in absence of Yvh1. We found that Yvh1 is not essential for wild-type induction of the transcriptional regulator of these genes, IME1, suggesting that either translation or post-translational modification to activate Ime1 has been compromised. Since a defect in ribosome biogenesis in general can be related to other various defects, the ribosome biogenesis defect caused by absence of Yvh1 might be an indirect cause of observed phenotypes. |
---|---|
ISSN: | 0021-924X 1756-2651 |
DOI: | 10.1093/jb/mvr040 |