Molecularly Imprinted Shells from Polymer and Xerogel Matrices on Polystyrene Colloidal Spheres

We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6‐trinitrotoluene (TNT). PS spheres with surface‐functionalized carboxyl‐group layers could direct a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2012-04, Vol.18 (15), p.4692-4698
Hauptverfasser: Guan, Guijian, Liu, Renyong, Mei, Qingsong, Zhang, Zhongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6‐trinitrotoluene (TNT). PS spheres with surface‐functionalized carboxyl‐group layers could direct a selective imprinting polymerization on their surface through the hydrogen‐bonding interactions between surface carboxyl groups and amino monomers. Meanwhile, homogeneous polymerization in the solution phase was completely prevented by stepwise polymerization. The overall process led to the formation of monodisperse molecularly imprinted core–shell microspheres, and was very successful in the preparation of organic polymer and inorganic xerogel shells. Furthermore, greater capacity and faster binding kinetics towards target species were achieved, because surface‐imprinted sites ensured the complete removal of templates, good accessibility to target molecules, and low mass‐transfer resistance. The results reported herein, concerning the production of high‐quality molecularly imprinted products, could also form the basis for the formulation of a new strategy for the fabrication of various functional coating layers on colloidal spheres with potential applications in the fields of separations and chemical sensing. Capturing TNT: A versatile protocol for the synthesis of molecularly imprinted silica (MIS) and polymer (MIP) shells at the surface of polystyrene (PS) spheres was designed (see figure). The resultant microspheres exhibited high rebinding capacity and selectivity, as well as fast binding kinetics towards target species.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201102576