Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

[Display omitted] ►The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. ► The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2011-12, Vol.131 (1), p.132-135
Hauptverfasser: Tari, Nesa Esmaeilian, Kashani Motlagh, Mohammad M., Sohrabi, Beheshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] ►The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. ► The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. ► In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. ► The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. Different morphologies of nano hydroxyapatite particles, Ca 10(PO 4) 6(OH) 2 (HAP) are prepared by precipitation method using CaCl 2 and H 3PO 4 (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.
ISSN:0254-0584
1879-3312
DOI:10.1016/j.matchemphys.2011.07.078