Interfacial effects on droplet dynamics in Poiseuille flow
Many properties of emulsions arise from interfacial rheology, but a theoretical understanding of the effect of interfacial viscosities on droplet dynamics is lacking. Here we report such a theory, relating to isolated spherical drops in a Poiseuille flow. Stokes flow is assumed in the bulk phases, a...
Gespeichert in:
Veröffentlicht in: | Soft matter 2011-01, Vol.7 (17), p.7797-7804 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many properties of emulsions arise from interfacial rheology, but a theoretical understanding of the effect of interfacial viscosities on droplet dynamics is lacking. Here we report such a theory, relating to isolated spherical drops in a Poiseuille flow. Stokes flow is assumed in the bulk phases, and a jump in hydrodynamic stress at the interface is balanced by Marangoni and surface viscous forces according to the Boussinesq-Scriven constitutive law. Our model employs a linear equation of state for the surfactant. Our analysis predicts slip, cross-stream migration and droplet-circulation velocities. These results and the corresponding interfacial parameters are separable: e.g., cross-stream migration occurs only if gradients in surfactant concentration are present; slip velocity depends on viscosity contrast and dilatational properties, but not on shear Boussinesq number. This separability allows a new and advantageous means to measure surface viscous and elastic forces directly from the drop interface. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/C1SM05144J |