Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers

We discuss algebraic relations for reciprocal sums of Fibonacci and Lucas numbers. For a certain set of 12 such sums, we show that any two numbers are algebraically independent, and that any three are algebraically independent except for those in 22 exceptional triplets. We explicitly present algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elsner, Carsten, Shimomura, Shun, Shiokawa, Iekata
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss algebraic relations for reciprocal sums of Fibonacci and Lucas numbers. For a certain set of 12 such sums, we show that any two numbers are algebraically independent, and that any three are algebraically independent except for those in 22 exceptional triplets. We explicitly present algebraic relations for some of these exceptional cases.
ISSN:0094-243X
DOI:10.1063/1.3630036