Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries

► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1 C up to 100 cycles). ► At high rates, the sample operated at a go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2011-12, Vol.58, p.456-462
Hauptverfasser: Idris, Nurul Hayati, Rahman, Md Mokhlesur, Chou, Shu-Lei, Wang, Jia-Zhao, Wexler, David, Liu, Hua-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1 C up to 100 cycles). ► At high rates, the sample operated at a good fraction of its capacity. To reduce the reaction time, electrical energy consumption, and cost, binary α-NiS–β-NiS has been synthesized by a rapid, one-pot, hydrothermal autoclave microwave method within 15 min at temperatures of 160–180 °C. The microstructure and morphology of the α-NiS–β-NiS products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). At 140 °C, pure hexagonal NiAs-type α-NiS phase was identified from the XRD patterns. With increasing reaction temperature (160–180 °C), the XRD evidence indicates that an increasing fraction of rhombohedral millerite-like β-NiS is formed as a secondary phase. The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in term of high reversible capacity (320 mAh g −1 at 0.1 C up to 100 cycles). Even at high rates, the sample operated at a good fraction of its capacity. The likely contributing factor to the superior electrochemical performance of the α-NiS–β-NiS sample could be related to the improved morphology. TEM imaging confirmed that needle-like protrusions connect the clusters of α-NiS particles, and the individual protrusions indicated a very high surface area including folded sheet morphology, which helps to dissipate the surface accumulation of Li + ions and facilitate rapid mobility. These factors help to enhance the amount of lithium intercalated within the material.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2011.09.066