Sample distribution function based goodness-of-fit test for complex surveys

Testing the parametric distribution of a random variable is a fundamental problem in exploratory and inferential statistics. Classical empirical distribution function based goodness-of-fit tests typically require the data to be an independent and identically distributed realization of a certain prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2012-03, Vol.56 (3), p.664-679
1. Verfasser: Wang, Jianqiang C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Testing the parametric distribution of a random variable is a fundamental problem in exploratory and inferential statistics. Classical empirical distribution function based goodness-of-fit tests typically require the data to be an independent and identically distributed realization of a certain probability model, and thus would fail when complex sampling designs introduce dependency and selection bias to the realized sample. In this paper, we propose goodness-of-fit procedures for a survey variable. To this end, we introduce several divergence measures between the design weighted estimator of distribution function and the hypothesized distribution, and propose goodness-of-fit tests based on these divergence measures. The test procedures are substantiated by theoretical results on the convergence of the estimated distribution function to the superpopulation distribution function on a metric space. We also provide computational details on how to calculate test p-values, and demonstrate the performance of the proposed test through simulation experiments. Finally, we illustrate the utility of the proposed test through the analysis of US 2004 presidential election data.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2011.09.015