Light driving force for surface patterning on azobenzene-containing polymers
In this paper, we investigated the effect of light driving force induced surface deformation on azobenzene-containing polymers. The surface deformation is attributed to light-induced mass migration inside the polymers. Circular cap arrays are firstly fabricated by high power laser ablation via polar...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2011-09, Vol.13 (36), p.16150-16158 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigated the effect of light driving force induced surface deformation on azobenzene-containing polymers. The surface deformation is attributed to light-induced mass migration inside the polymers. Circular cap arrays are firstly fabricated by high power laser ablation via polarization controlled three-beam interference. The circular caps are subsequently exposed to polarization controlled two-beam interfering field. The results illuminate that when the interfering laser beams are both set to P polarization, the circular caps are deformed. While the laser beams are of other interfering modes like (S, S) and (+45° , -45°), the caps are seldom deformed. The circular caps are also exposed to single intensity-homogeneous linearly polarized laser beam. The deformation of the caps keeps the same direction as the irradiating polarization. A model based on the focusing effect of the circular caps is addressed to explain the origin of the light driving force for mass migration in azopolymers. The all-optical approach for the production of deformed caps can be used to generate aspherical lens, which may be applied to many domains. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c1cp21098j |