A fast-pyrolysis self-propagating high temperature synthesis route to single phase of boron carbide ultrafine powders
Single phase of boron carbide B13C2 ultrafine powders was synthesized by a fast-pyrolysis-self-propagating high temperature synthesis method. The X-ray diffractometry is demonstrated a pure phase of rhombohedral structure. The field-emission scanning electron microscopy and transmission electron mic...
Gespeichert in:
Veröffentlicht in: | Journal of the Ceramic Society of Japan 2011/08/01, Vol.119(1392), pp.631-634 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single phase of boron carbide B13C2 ultrafine powders was synthesized by a fast-pyrolysis-self-propagating high temperature synthesis method. The X-ray diffractometry is demonstrated a pure phase of rhombohedral structure. The field-emission scanning electron microscopy and transmission electron microscopy show that the size of particles ranged from 50 to 200 nm, with approximately 90 nm in average. The energy dispersive X-ray spectroscopy reveals that the sample has a uniform composition with the B/C atomic ratios ranging from 6.38 to 6.49. The Raman spectrum indicates the characteristic vibrations of C–B–C chain and B12 icosahedron. Fast-pyrolysis-self-propagating high temperature synthesis and vapor–solid growth mechanism ware proposed. |
---|---|
ISSN: | 1882-0743 1348-6535 |
DOI: | 10.2109/jcersj2.119.631 |