Modeling of solid phase sedimentation during directional solidification in a side cooled cavity
Purpose - The purpose of this paper is to present a new numerical approach for modeling the multi-phase flow during an alloy solidification process. In many solidification processes, advection of solid may have a dramatic effect on bulk convection field as well as on the solid front growth and hence...
Gespeichert in:
Veröffentlicht in: | International journal of numerical methods for heat & fluid flow 2011-01, Vol.21 (8), p.913-934 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose - The purpose of this paper is to present a new numerical approach for modeling the multi-phase flow during an alloy solidification process. In many solidification processes, advection of solid may have a dramatic effect on bulk convection field as well as on the solid front growth and hence on the macro-segregation pattern. In the present work, a numerical model is developed to simulate directional solidification in presence of melt convection as well as solid advection in the form of sedimentation. A 2D cavity filled with hyper-eutectic aqueous ammonium chloride solution (25 wt.% of ammonium chloride) being chilled from one of the side walls has been chosen as the model problem for the numerical simulation.Design methodology approach - A fixed grid volume averaging technique has been used for solving mass, momentum, energy, and species equation while taking into account the solid phase advection and local re-melting. Two different criteria have been identified for the solid particles in the mushy zone to be mobile. These two criteria are represented by a critical solid fraction, and a critical velocity. Based on these two criteria, the mushy zone has been subdivided into two different regions namely, an immobile coherent zone consisting of packed equiaxed crystals and a mobile non-coherent zone where the solid crystals are able to move.Findings - The numerical results are compared with corresponding experimental observations.Originality value - The solid advection velocity and source terms dealing with solid velocity have been calculated using an explicit scheme, whereas the main conservation equations are solved using an implicit scheme. |
---|---|
ISSN: | 0961-5539 1758-6585 |
DOI: | 10.1108/09615531111177723 |