An ultradiscrete integrable map arising from a pair of tropical elliptic pencils

We present a tropical geometric description of a piecewise linear map whose invariant curve is a concave polygon. In contrast to convex polygons, a concave one is not directly related to tropical geometry; nevertheless the description is given in terms of the addition formula of a tropical elliptic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2011-11, Vol.375 (47), p.4178-4182
1. Verfasser: Nobe, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a tropical geometric description of a piecewise linear map whose invariant curve is a concave polygon. In contrast to convex polygons, a concave one is not directly related to tropical geometry; nevertheless the description is given in terms of the addition formula of a tropical elliptic curve. We show that the map arises from a pair of tropical elliptic pencils, each member of which is the invariant curve of an ultradiscrete QRT map. ► We present a tropical geometric description of a piecewise linear map. ► The map is integrable and its invariant curve is a concave nonagon. ► The map is reformulated in terms of the addition formula of a tropical elliptic curve. ► The general solution to the map is given by using the ultradiscrete theta function.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2011.10.010