Amorphization and recrystallization study of lithium insertion into manganese dioxide
Various polymorphs of MnO(2) are widely used as electrode materials in Li/MnO(2) batteries. Electrolytic manganese dioxide (EMD) is the most electrochemically active form of MnO(2) and is very difficult to characterize. Their structural details are still largely unknown owing to the poor quality of...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (4), p.1307-1313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Various polymorphs of MnO(2) are widely used as electrode materials in Li/MnO(2) batteries. Electrolytic manganese dioxide (EMD) is the most electrochemically active form of MnO(2) and is very difficult to characterize. Their structural details are still largely unknown owing to the poor quality of X-ray diffraction (XRD) patterns obtained from most MnO(2) samples. Simulated amorphisation and crystallization technique was used to derive microstructural models for Li-MnO(2) which included most microstructural details that one would expect to find in the real material. Specifically, pyrolusite-MnO(2), comprising about 25,000 atoms, was amorphised (strain-induced) under molecular dynamics (MD) and different concentrations of lithium ions were inserted. Each system was then crystallized under MD simulation. The resulting models conformed to the pyrolusite polymorph, with microstructural features including: extensive micro-twinning and more general grain-boundaries, stacking faults, dislocations and isolated point defects and defect clusters. Molecular graphical images, showing the atom positions for the microstructural features together with simulated XRD patterns they give rise to, are presented and compared with measured XRD. The calculated XRD are in accord with experiment thus validating the structural models. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c0cp00274g |