An improved bound for the Manickam–Miklós–Singhi conjecture

We show that for n > k 2 ( 4 e log k ) k , every set { x 1 , ⋯ , x n } of n real numbers with ∑ i = 1 n x i ≥ 0 has at least ( n − 1 k − 1 ) k -element subsets of a non-negative sum. This is a substantial improvement on the best previously known bound of n > ( k − 1 ) ( k k + k 2 ) + k , prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2012, Vol.33 (1), p.27-32
1. Verfasser: Tyomkyn, Mykhaylo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for n > k 2 ( 4 e log k ) k , every set { x 1 , ⋯ , x n } of n real numbers with ∑ i = 1 n x i ≥ 0 has at least ( n − 1 k − 1 ) k -element subsets of a non-negative sum. This is a substantial improvement on the best previously known bound of n > ( k − 1 ) ( k k + k 2 ) + k , proved by Manickam and Miklós  [9] in 1987.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2011.07.006