Graphene electric double layer capacitor with ultra-high-power performance

We have demonstrated, for the first time, efficient 120 Hz filtering by an electric double layer capacitor (EDLC). The key to this ultra-high-power performance is electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized both elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2011-12, Vol.56 (28), p.10443-10449
Hauptverfasser: Miller, John R., Outlaw, R.A., Holloway, B.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have demonstrated, for the first time, efficient 120 Hz filtering by an electric double layer capacitor (EDLC). The key to this ultra-high-power performance is electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized both electronic and ionic resistance and produced capacitors having RC time-constants of less than 200 μs. Significantly, graphene nanosheets have a preponderance of exposed edge planes that greatly increase stored charge over designs relying on basal plane surfaces. Collectively these factors make vertically oriented graphene nanosheet electrodes ideally suited for producing high-frequency EDLCs. Capacitors constructed with these electrodes are predicted to be significantly smaller than aluminum electrolyte capacitors that they could functionally replace plus be manufactured using standard semiconductor process equipment, creating interesting commercial opportunities.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2011.05.122