Fabrication and high heat flux test of large mockups for ITER first wall semi-prototype
The main topic of an ITER blanket first wall procurement is to qualify whether each party has the key technology needed for the fabrication and joining of first wall components. A semi-prototype qualification project will be released requiring that the single components of a full-scale first wall mu...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2011-10, Vol.86 (9), p.1766-1770 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main topic of an ITER blanket first wall procurement is to qualify whether each party has the key technology needed for the fabrication and joining of first wall components. A semi-prototype qualification project will be released requiring that the single components of a full-scale first wall must be fabricated and successfully pass high heat flux tests using a hypervapotron cooling channel. In this work, various mockup types have been modeled and fabricated to develop the joining technology for a semi-prototype. The semi-prototype, which has three double-fingered panels, is a scaled-down component of a full-size first wall. The standard or slit mockups with a 80
mm
×
80
mm single beryllium tile joined to a CuCrZr heat sink were fabricated to qualify our HIP (Hot Isostatic Pressing) technology for the joining of semi-prototype. These standard mockups were installed to perform a high heat flux test in the Korea heat load test facility (KoHLT). For a preliminary test of a semi-prototype, thermo-hydraulic mockups of 710
mm
×
100
mm were designed and fabricated to verify the Cu/SS cooling performance, such as hypervapotron. For the high heat flux test in our KoHLT facility, the normal cycle is based on an expected heat flux of 300
s in accordance with the ITER qualification specifications. These tests will be performed to qualify the joining technologies, which is required for an ITER blanket first wall and a semi-prototype. |
---|---|
ISSN: | 0920-3796 1873-7196 |
DOI: | 10.1016/j.fusengdes.2011.02.087 |