On spacelike hypersurfaces with constant scalar curvature in the anti-de Sitter space

In this paper, we classify complete spacelike hypersurfaces in the anti-de Sitter space H 1 n + 1 ( − 1 ) ( n ⩾ 3 ) with constant scalar curvature and with two principal curvatures. Moreover, we prove that if M n is a complete spacelike hypersurface with constant scalar curvature n ( n − 1 ) R and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2011-12, Vol.29 (6), p.737-746
Hauptverfasser: Chu, Yawei, Zhai, Shujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we classify complete spacelike hypersurfaces in the anti-de Sitter space H 1 n + 1 ( − 1 ) ( n ⩾ 3 ) with constant scalar curvature and with two principal curvatures. Moreover, we prove that if M n is a complete spacelike hypersurface with constant scalar curvature n ( n − 1 ) R and with two distinct principal curvatures such that the multiplicity of one of the principal curvatures is n − 1 , then R < ( n − 2 ) c / n . Additionally, we also obtain several rigidity theorems for such hypersurfaces.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2011.08.002