On spacelike hypersurfaces with constant scalar curvature in the anti-de Sitter space
In this paper, we classify complete spacelike hypersurfaces in the anti-de Sitter space H 1 n + 1 ( − 1 ) ( n ⩾ 3 ) with constant scalar curvature and with two principal curvatures. Moreover, we prove that if M n is a complete spacelike hypersurface with constant scalar curvature n ( n − 1 ) R and w...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2011-12, Vol.29 (6), p.737-746 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we classify complete spacelike hypersurfaces in the anti-de Sitter space
H
1
n
+
1
(
−
1
)
(
n
⩾
3
)
with constant scalar curvature and with two principal curvatures. Moreover, we prove that if
M
n
is a complete spacelike hypersurface with constant scalar curvature
n
(
n
−
1
)
R
and with two distinct principal curvatures such that the multiplicity of one of the principal curvatures is
n
−
1
, then
R
<
(
n
−
2
)
c
/
n
. Additionally, we also obtain several rigidity theorems for such hypersurfaces. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2011.08.002 |