Determination of the relevant magnetic interactions in low-dimensional molecular materials: the fundamental role of single crystal high frequency EPR

A new one-dimensional copper(II) complex with formula [Cu(hfac)(2)(N(3)TEMPO)](n) (hfac = hexafluoroacetylacetonate and N(3)TEMPO = 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl) has been synthesized and investigated by X-ray crystallography, magnetometry and multifrequency single crystal EPR. The sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2011-01, Vol.40 (41), p.10843-10850
Hauptverfasser: Allão, R A, Jordão, A K, Resende, J A L C, Cunha, A C, Ferreira, V F, Novak, M A, Sangregorio, C, Sorace, L, Vaz, M G F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new one-dimensional copper(II) complex with formula [Cu(hfac)(2)(N(3)TEMPO)](n) (hfac = hexafluoroacetylacetonate and N(3)TEMPO = 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl) has been synthesized and investigated by X-ray crystallography, magnetometry and multifrequency single crystal EPR. The system crystallizes in the P1 space group with two non equivalent copper(II) ions in the unit cell, the two nitroxide radicals being coordinated to Cu(1) in axial positions. The copper(II) ions are bridged by N(3)TEMPO radicals resulting in a zig-zag chain structure. The magnetic susceptibility data were at first satisfactorily modeled assuming an alternating spin chain along the monodimensional covalent skeleton, with a ferromagnetic interaction between Cu(1) and the nitroxide moieties and a weaker antiferromagnetic interaction between these and Cu(2) (J(1) = -13.8 cm(-1), J(2) = +2.4 cm(-1)). However, single crystal EPR studies performed at the X- and W-band clearly demonstrate that the observed magnetic monodimensional character of the complex is actually due to the intermolecular contacts involving N(3)TEMPO ligands. This prompted us to fit the magnetic data using a consistent model, pointing out the fundamental role of single crystal EPR data in defining a correct model to describe the magnetic properties of molecular low dimensional systems.
ISSN:1477-9226
1477-9234
DOI:10.1039/c1dt10780a