Effect of nitrogen and intrinsic defect complexes on conversion efficiency of ZnO for hydrogen generation from water

Band gap narrowing is important for applications of ZnO, especially for photoelectrochemical water splitting. In this work, we carried out first-principles electronic structure calculations with a hybrid density functional on defected ZnO. It is found that nitrogen substitutional doping alone cannot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-09, Vol.13 (35), p.15973-15976
Hauptverfasser: LU, Y. H, RUSSO, S. P, FENG, Y. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Band gap narrowing is important for applications of ZnO, especially for photoelectrochemical water splitting. In this work, we carried out first-principles electronic structure calculations with a hybrid density functional on defected ZnO. It is found that nitrogen substitutional doping alone cannot explain the largely enhanced conversion efficiency observed in nitrogen doped ZnO. Instead, complex defects formed by substitutional nitrogen and intrinsic defects play an important role in the band gap narrowing, in agreement with recent experimental results. We propose ZnO fabricated in a Zn-rich environment with heavy nitrogen doping as a photocatalyst for hydrogen generation from water splitting. A method for controlling the band gap of ZnO is also proposed.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp20908f