Relationship of Fe2+ concentration in solution and current efficiency in electrodeposition of CoFe filmsa
Our published work on stress evolution in CoFe films [Electrochim. Acta 55 (2010) 9035], indicated that adsorption/desorption of hydrogen is a primary cause of tensile stress which increases with the increase of Fe-content in deposit and decrease of current efficiency, i.e. higher supply of protons...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2011-12, Vol.58, p.25-32 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our published work on stress evolution in CoFe films [Electrochim. Acta 55 (2010) 9035], indicated that adsorption/desorption of hydrogen is a primary cause of tensile stress which increases with the increase of Fe-content in deposit and decrease of current efficiency, i.e. higher supply of protons to the electrode surface. Using the electroanalytical techniques in this study it has been demonstrated that a higher supply of protons to the electrode surface with increase of Fe2+ concentrations in solution brings about higher Fe-content in deposit and lower current efficiency. First, it was found that the reduction rate of H+ from the solution is faster on CoFe surface with higher Fe-content in CoFe deposit. Second, it was found that higher concentrations of Fe2+ in solution bring about higher surface concentration of H+ through the Fe2+ hydrolysis reaction, i.e. Fe2+ + HOH = FeOH+ + H+. The proton liberated through hydrolysis reaction is reduced as soon as it is formed, together with other electroactive species. |
---|---|
ISSN: | 0013-4686 |
DOI: | 10.1016/j.electacta.2011.08.066 |