High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex

► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ►...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-12, Vol.52, p.73-91
Hauptverfasser: Gargano, F., Sammartino, M., Sciacca, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue
container_start_page 73
container_title Computers & fluids
container_volume 52
creator Gargano, F.
Sammartino, M.
Sciacca, V.
description ► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures. We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 10 3–10 5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 10 4–10 5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.
doi_str_mv 10.1016/j.compfluid.2011.08.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963859951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301100274X</els_id><sourcerecordid>1709771709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhi1EJIaEM-ANgk03ttvdbi-jiDykCCQea8uPavDgsQe7O8rsuAM35CRxa6IsYeOSVV9VSf-H0GtKWkro8H7b2rTbT2HxrmWE0paMLWHsGdrQUciGCC6eow0hvG-E7MgL9LKULan_jvENCtf--w_8GQ4xBVdwXHYGMv6o7zzkv7__fJnTTyi4pLDMPsWCdXTYpCU6nQ846EOFC-x11msb--gWC5U4YI0z2NkHH0FnfJfyDPdn6GTSocCrx3qKvl1--Hpx3dx-urq5OL9tLKdkbphhnbBiGCkFY-ggJyYk5cCmnhtGnXWdY50eOBjSd8bYaZADGyc-OUPIMHSn6O1x7z6nXwuUWe18sRCCjpCWouTQjb2UPa3ku3-SVBApxPpWVBxRm1MpGSa1z35XY1CUqNWE2qonE2o1ocioqok6-ebxiC5WhynraH15GmdcUDl2vHLnRw5qNqsAVayHWAP1a5bKJf_fWw9-XaXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709771709</pqid></control><display><type>article</type><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gargano, F. ; Sammartino, M. ; Sciacca, V.</creator><creatorcontrib>Gargano, F. ; Sammartino, M. ; Sciacca, V.</creatorcontrib><description>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures. We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 10 3–10 5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 10 4–10 5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2011.08.022</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundary layer ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; High Reynolds number flows ; High-reynolds-number turbulence ; Mathematical analysis ; Mathematical models ; Navier Stokes solutions ; Navier-Stokes equations ; Physics ; Prandtl’s equation ; Rotational flow and vorticity ; Separated flows ; Separation ; Turbulent flows, convection, and heat transfer ; Unsteady ; Unsteady separation ; Vortices</subject><ispartof>Computers &amp; fluids, 2011-12, Vol.52, p.73-91</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</citedby><cites>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579301100274X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24719834$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gargano, F.</creatorcontrib><creatorcontrib>Sammartino, M.</creatorcontrib><creatorcontrib>Sciacca, V.</creatorcontrib><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><title>Computers &amp; fluids</title><description>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures. We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 10 3–10 5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 10 4–10 5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High Reynolds number flows</subject><subject>High-reynolds-number turbulence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier Stokes solutions</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Prandtl’s equation</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Separation</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Unsteady</subject><subject>Unsteady separation</subject><subject>Vortices</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtuFDEQhi1EJIaEM-ANgk03ttvdbi-jiDykCCQea8uPavDgsQe7O8rsuAM35CRxa6IsYeOSVV9VSf-H0GtKWkro8H7b2rTbT2HxrmWE0paMLWHsGdrQUciGCC6eow0hvG-E7MgL9LKULan_jvENCtf--w_8GQ4xBVdwXHYGMv6o7zzkv7__fJnTTyi4pLDMPsWCdXTYpCU6nQ846EOFC-x11msb--gWC5U4YI0z2NkHH0FnfJfyDPdn6GTSocCrx3qKvl1--Hpx3dx-urq5OL9tLKdkbphhnbBiGCkFY-ggJyYk5cCmnhtGnXWdY50eOBjSd8bYaZADGyc-OUPIMHSn6O1x7z6nXwuUWe18sRCCjpCWouTQjb2UPa3ku3-SVBApxPpWVBxRm1MpGSa1z35XY1CUqNWE2qonE2o1ocioqok6-ebxiC5WhynraH15GmdcUDl2vHLnRw5qNqsAVayHWAP1a5bKJf_fWw9-XaXc</recordid><startdate>20111230</startdate><enddate>20111230</enddate><creator>Gargano, F.</creator><creator>Sammartino, M.</creator><creator>Sciacca, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20111230</creationdate><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><author>Gargano, F. ; Sammartino, M. ; Sciacca, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High Reynolds number flows</topic><topic>High-reynolds-number turbulence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier Stokes solutions</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Prandtl’s equation</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Separation</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Unsteady</topic><topic>Unsteady separation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargano, F.</creatorcontrib><creatorcontrib>Sammartino, M.</creatorcontrib><creatorcontrib>Sciacca, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gargano, F.</au><au>Sammartino, M.</au><au>Sciacca, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</atitle><jtitle>Computers &amp; fluids</jtitle><date>2011-12-30</date><risdate>2011</risdate><volume>52</volume><spage>73</spage><epage>91</epage><pages>73-91</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures. We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 10 3–10 5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 10 4–10 5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2011.08.022</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2011-12, Vol.52, p.73-91
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_963859951
source Elsevier ScienceDirect Journals Complete
subjects Boundary layer
Computational fluid dynamics
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
High Reynolds number flows
High-reynolds-number turbulence
Mathematical analysis
Mathematical models
Navier Stokes solutions
Navier-Stokes equations
Physics
Prandtl’s equation
Rotational flow and vorticity
Separated flows
Separation
Turbulent flows, convection, and heat transfer
Unsteady
Unsteady separation
Vortices
title High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Reynolds%20number%20Navier%E2%80%93Stokes%20solutions%20and%20boundary%20layer%20separation%20induced%20by%20a%20rectilinear%20vortex&rft.jtitle=Computers%20&%20fluids&rft.au=Gargano,%20F.&rft.date=2011-12-30&rft.volume=52&rft.spage=73&rft.epage=91&rft.pages=73-91&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2011.08.022&rft_dat=%3Cproquest_cross%3E1709771709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709771709&rft_id=info:pmid/&rft_els_id=S004579301100274X&rfr_iscdi=true