High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex
► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ►...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2011-12, Vol.52, p.73-91 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | Computers & fluids |
container_volume | 52 |
creator | Gargano, F. Sammartino, M. Sciacca, V. |
description | ► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures.
We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers
Re
=
10
3–10
5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high
Re numbers
Re
=
10
4–10
5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation. |
doi_str_mv | 10.1016/j.compfluid.2011.08.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963859951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301100274X</els_id><sourcerecordid>1709771709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhi1EJIaEM-ANgk03ttvdbi-jiDykCCQea8uPavDgsQe7O8rsuAM35CRxa6IsYeOSVV9VSf-H0GtKWkro8H7b2rTbT2HxrmWE0paMLWHsGdrQUciGCC6eow0hvG-E7MgL9LKULan_jvENCtf--w_8GQ4xBVdwXHYGMv6o7zzkv7__fJnTTyi4pLDMPsWCdXTYpCU6nQ846EOFC-x11msb--gWC5U4YI0z2NkHH0FnfJfyDPdn6GTSocCrx3qKvl1--Hpx3dx-urq5OL9tLKdkbphhnbBiGCkFY-ggJyYk5cCmnhtGnXWdY50eOBjSd8bYaZADGyc-OUPIMHSn6O1x7z6nXwuUWe18sRCCjpCWouTQjb2UPa3ku3-SVBApxPpWVBxRm1MpGSa1z35XY1CUqNWE2qonE2o1ocioqok6-ebxiC5WhynraH15GmdcUDl2vHLnRw5qNqsAVayHWAP1a5bKJf_fWw9-XaXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709771709</pqid></control><display><type>article</type><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gargano, F. ; Sammartino, M. ; Sciacca, V.</creator><creatorcontrib>Gargano, F. ; Sammartino, M. ; Sciacca, V.</creatorcontrib><description>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures.
We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers
Re
=
10
3–10
5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high
Re numbers
Re
=
10
4–10
5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2011.08.022</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Boundary layer ; Computational fluid dynamics ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; High Reynolds number flows ; High-reynolds-number turbulence ; Mathematical analysis ; Mathematical models ; Navier Stokes solutions ; Navier-Stokes equations ; Physics ; Prandtl’s equation ; Rotational flow and vorticity ; Separated flows ; Separation ; Turbulent flows, convection, and heat transfer ; Unsteady ; Unsteady separation ; Vortices</subject><ispartof>Computers & fluids, 2011-12, Vol.52, p.73-91</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</citedby><cites>FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004579301100274X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24719834$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gargano, F.</creatorcontrib><creatorcontrib>Sammartino, M.</creatorcontrib><creatorcontrib>Sciacca, V.</creatorcontrib><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><title>Computers & fluids</title><description>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures.
We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers
Re
=
10
3–10
5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high
Re numbers
Re
=
10
4–10
5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</description><subject>Boundary layer</subject><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High Reynolds number flows</subject><subject>High-reynolds-number turbulence</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier Stokes solutions</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Prandtl’s equation</subject><subject>Rotational flow and vorticity</subject><subject>Separated flows</subject><subject>Separation</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Unsteady</subject><subject>Unsteady separation</subject><subject>Vortices</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkUtuFDEQhi1EJIaEM-ANgk03ttvdbi-jiDykCCQea8uPavDgsQe7O8rsuAM35CRxa6IsYeOSVV9VSf-H0GtKWkro8H7b2rTbT2HxrmWE0paMLWHsGdrQUciGCC6eow0hvG-E7MgL9LKULan_jvENCtf--w_8GQ4xBVdwXHYGMv6o7zzkv7__fJnTTyi4pLDMPsWCdXTYpCU6nQ846EOFC-x11msb--gWC5U4YI0z2NkHH0FnfJfyDPdn6GTSocCrx3qKvl1--Hpx3dx-urq5OL9tLKdkbphhnbBiGCkFY-ggJyYk5cCmnhtGnXWdY50eOBjSd8bYaZADGyc-OUPIMHSn6O1x7z6nXwuUWe18sRCCjpCWouTQjb2UPa3ku3-SVBApxPpWVBxRm1MpGSa1z35XY1CUqNWE2qonE2o1ocioqok6-ebxiC5WhynraH15GmdcUDl2vHLnRw5qNqsAVayHWAP1a5bKJf_fWw9-XaXc</recordid><startdate>20111230</startdate><enddate>20111230</enddate><creator>Gargano, F.</creator><creator>Sammartino, M.</creator><creator>Sciacca, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20111230</creationdate><title>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</title><author>Gargano, F. ; Sammartino, M. ; Sciacca, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-2b237c76811ebb169f27914e2f54b21dcd3d23a64eb053bbcf69628f4fdb00663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer</topic><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High Reynolds number flows</topic><topic>High-reynolds-number turbulence</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier Stokes solutions</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Prandtl’s equation</topic><topic>Rotational flow and vorticity</topic><topic>Separated flows</topic><topic>Separation</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Unsteady</topic><topic>Unsteady separation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gargano, F.</creatorcontrib><creatorcontrib>Sammartino, M.</creatorcontrib><creatorcontrib>Sciacca, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gargano, F.</au><au>Sammartino, M.</au><au>Sciacca, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex</atitle><jtitle>Computers & fluids</jtitle><date>2011-12-30</date><risdate>2011</risdate><volume>52</volume><spage>73</spage><epage>91</epage><pages>73-91</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures.
We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers
Re
=
10
3–10
5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high
Re numbers
Re
=
10
4–10
5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2011.08.022</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2011-12, Vol.52, p.73-91 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_miscellaneous_963859951 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boundary layer Computational fluid dynamics Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) High Reynolds number flows High-reynolds-number turbulence Mathematical analysis Mathematical models Navier Stokes solutions Navier-Stokes equations Physics Prandtl’s equation Rotational flow and vorticity Separated flows Separation Turbulent flows, convection, and heat transfer Unsteady Unsteady separation Vortices |
title | High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Reynolds%20number%20Navier%E2%80%93Stokes%20solutions%20and%20boundary%20layer%20separation%20induced%20by%20a%20rectilinear%20vortex&rft.jtitle=Computers%20&%20fluids&rft.au=Gargano,%20F.&rft.date=2011-12-30&rft.volume=52&rft.spage=73&rft.epage=91&rft.pages=73-91&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2011.08.022&rft_dat=%3Cproquest_cross%3E1709771709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709771709&rft_id=info:pmid/&rft_els_id=S004579301100274X&rfr_iscdi=true |