High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex

► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ►...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2011-12, Vol.52, p.73-91
Hauptverfasser: Gargano, F., Sammartino, M., Sciacca, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:► We compute Prandtl and Navier–Stokes solutions at high Re. ► Large-scale and small-scale interactions within the boundary layer are revealed. ► Large-scale interaction leads to the failure of Prandtl’s BL theory. ► High gradients and splitting of vortex cores characterize the small-scale stage. ► Peaks of enstrophy signal the interaction between dipolar vortex structures. We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 10 3–10 5, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 10 4–10 5. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.
ISSN:0045-7930
1879-0747
DOI:10.1016/j.compfluid.2011.08.022