Model catalysts of supported Au nanoparticles and mass-selected clusters
In surface science, much effort has gone into obtaining a deeper understanding of the size-selectivity of nanocatalysts. In this article, electronic and chemical properties of various model catalysts consisting of Au are reported. Au supported by oxide surfaces becomes inert towards chemisorption an...
Gespeichert in:
Veröffentlicht in: | PCCP. Physical chemistry chemical physics (Print) 2010-12, Vol.12 (46), p.15172-15180 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In surface science, much effort has gone into obtaining a deeper understanding of the size-selectivity of nanocatalysts. In this article, electronic and chemical properties of various model catalysts consisting of Au are reported. Au supported by oxide surfaces becomes inert towards chemisorption and oxidation as the particle size became smaller than a critical size (2-3 nm). The inertness of these small Au nanoparticles is due to the electron-deficient nature of smaller Au nanoparticles, which is a result of metal-substrate charge transfer. Properties of Au clusters smaller than ∼20 atoms were shown to be non-scalable, i.e., every atom can drastically change the chemical properties of the clusters. Moreover, clusters with the same size can show dissimilar properties on various substrates. These recent endeavours show that the activity of a catalyst can be tuned by varying the substrate or by varying the cluster size on an atom-by-atom basis. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c0cp00467g |