A novel approach to correlation reflectometry
The use of microwave synthesized sources improved significantly the performance of correlation reflectometry diagnostics for fusion plasmas providing broadband operation with high quality signals and fast frequency switching times. Recent new developments of those sources made at IPFN opened an all-...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2011-10, Vol.86 (6), p.552-555 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of microwave synthesized sources improved significantly the performance of correlation reflectometry diagnostics for fusion plasmas providing broadband operation with high quality signals and fast frequency switching times. Recent new developments of those sources made at IPFN opened an all-new way to build correlation reflectometry diagnostics with improved performance and measuring capability. Some of the key features now attainable are independent probing and local oscillator signals generated by separated frequency synthesizers; very good frequency control and synchronization of both the local and the radio-frequency oscillators providing very high stability. The technological advances make it possible to further reduce the switching time between adjacent probing frequencies while keeping the ability to operate in a broad frequency range.
Here we present a multichannel correlation system based on those novel technologies using several independent and self-contained fully synthesized broadband channels. With this type of system various type of measurements are possible: (i) fast stepwise radial scans to extract the radial profile of turbulence parameters (spectra, RMS, rotation from Doppler shift, etc.); (ii) radial scans of the plasma using two identical systems in parallel where one system operates in frequency steps and the other makes multiple small steps around each selected frequency of the first system. The proposed diagnostic is very powerful and versatile. With a system having
n identical channels, all transmitting and receiving simultaneously, the number of simultaneous correlations measurements that can be performed is given by
n
×
(
n
−
1)/2. The minimal configuration uses two channels thus providing one (time domain) correlation signal channels can be easily added at any time increasing the measuring capability of the diagnostic. Several examples are given that illustrate the wide range of measurements that can be made using the novel approach for correlation reflectometry diagnostics. |
---|---|
ISSN: | 0920-3796 1873-7196 |
DOI: | 10.1016/j.fusengdes.2011.03.013 |