Fabrication and installation of KSTAR in-vessel control coils

The in-vessel control coil (IVCC) system, which has been designed for dedication of various active feedback plasma control functions, successfully fabricated and installed in the vacuum vessel of the Korea Superconducting Tokamak Advanced Research (KSTAR). The IVCC system consists of sixteen segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2011-10, Vol.86 (9), p.1975-1979
Hauptverfasser: Kim, H.K., Lee, K.S., Yang, H.L., Last, J.R., Bertolini, E., Kim, K.M., Bang, E.N., Kim, H.T., Jeon, Y.M., Kwon, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in-vessel control coil (IVCC) system, which has been designed for dedication of various active feedback plasma control functions, successfully fabricated and installed in the vacuum vessel of the Korea Superconducting Tokamak Advanced Research (KSTAR). The IVCC system consists of sixteen segmented coils that were independently fabricated outside the vacuum vessel and installed without any inside welding or brazing joints. The segmented coil system has several advantages such as eliminating possibility of cooling water leakage at the welded or brazed joints, simplification in fabrication and installation, and easy repair and maintenance of the coil system. Each segment contains eight oxygen-free high conductive coppers, which are grouped to four pairs, called as sections. Consequently, a segmented coil forms four sections for position control, field error correction (FEC), and resistive wall mode (RWM) control in accordance with electrical connection outside the cryostat. The eight conductors (or four sections) with internal coolant holes were enclosed in a rectangular welded jacket made of stainless steel 316LN and electrically insulated from the conductors by epoxy/glass composite layers. This coil system was commissioned up to 5 kA (30 kA-turns) for 5 s to achieve tentative use for the fast vertical plasma position control in the 2010 campaign of the KSTAR. This paper describes the several remarkable results in the fabrication and installation of the IVCC as well as commissioning results.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2011.01.078