The super spanning connectivity and super spanning laceability of the enhanced hypercubes

A k -container C ( u , v ) of a graph G is a set of k disjoint paths between u and v . A k -container C ( u , v ) of G is a k * -container if it contains all vertices of G . A graph G is k * -connected if there exists a k * -container between any two distinct vertices of G . Therefore, a graph is 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2009-04, Vol.48 (1), p.66-87
Hauptverfasser: Chang, Chung-Hao, Lin, Cheng-Kuan, Tan, Jimmy J. M., Huang, Hua-Min, Hsu, Lih-Hsing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A k -container C ( u , v ) of a graph G is a set of k disjoint paths between u and v . A k -container C ( u , v ) of G is a k * -container if it contains all vertices of G . A graph G is k * -connected if there exists a k * -container between any two distinct vertices of G . Therefore, a graph is 1 * -connected (respectively, 2 * -connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k * -container between any two distinct vertices of G for every k with 1≤ k ≤ κ ( G ) where κ ( G ) is the connectivity of G . A bipartite graph G is k * -laceable if there exists a k * -container between any two vertices from different partite set of G . A bipartite graph G is super spanning laceable if there exists a k * -container between any two vertices from different partite set of G for every k with 1≤ k ≤ κ ( G ). In this paper, we prove that the enhanced hypercube Q n , m is super spanning laceable if m is an odd integer and super spanning connected if otherwise.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-008-0206-0