Slice sampling mixture models

We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007 ). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2011, Vol.21 (1), p.93-105
Hauptverfasser: Kalli, Maria, Griffin, Jim E., Walker, Stephen G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a more efficient version of the slice sampler for Dirichlet process mixture models described by Walker (Commun. Stat., Simul. Comput. 36:45–54, 2007 ). This new sampler allows for the fitting of infinite mixture models with a wide-range of prior specifications. To illustrate this flexibility we consider priors defined through infinite sequences of independent positive random variables. Two applications are considered: density estimation using mixture models and hazard function estimation. In each case we show how the slice efficient sampler can be applied to make inference in the models. In the mixture case, two submodels are studied in detail. The first one assumes that the positive random variables are Gamma distributed and the second assumes that they are inverse-Gaussian distributed. Both priors have two hyperparameters and we consider their effect on the prior distribution of the number of occupied clusters in a sample. Extensive computational comparisons with alternative “conditional” simulation techniques for mixture models using the standard Dirichlet process prior and our new priors are made. The properties of the new priors are illustrated on a density estimation problem.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-009-9150-y