Pt on graphene monolayers supported on a Ni(111) substrate: Relativistic density-functional calculations

The structural, energetic, and magnetic properties of Pt atoms and dimers adsorbed on a Ni-supported graphene layer have been investigated using density-functional calculations, including the influence of dispersion forces and of spin-orbit coupling. Dispersion forces are found to be essential to st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-02, Vol.136 (7), p.074701-074701-11
Hauptverfasser: Błoński, Piotr, Hafner, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structural, energetic, and magnetic properties of Pt atoms and dimers adsorbed on a Ni-supported graphene layer have been investigated using density-functional calculations, including the influence of dispersion forces and of spin-orbit coupling. Dispersion forces are found to be essential to stabilize a chemisorbed graphene layer on the Ni(111) surface. The presence of the Ni-substrate leads not only to a stronger interaction of Pt atoms and dimers with graphene but also to a locally increased binding between graphene and the substrate and a complex reconstruction of the adlayer. The stronger binding of the dimer also stabilizes a flat adsorption geometry in contrast to the upright geometry on a free-standing graphene layer. These effects are further enhanced by dispersion corrections. Isolated Pt adatoms and flat dimers are found to be non-magnetic, while an upright Pt dimer has strongly anisotropic spin and orbital moments. For the clean C/Ni(111) system, we calculate an in-plane magnetic anisotropy, which is also conserved in the presence of isolated Pt adatoms. Surprisingly, upright Pt-dimers induce a re-orientation of the easy magnetic axis to a direction perpendicular to the surface, in analogy to Pt 2 on a free-standing graphene layer and to the axial anisotropy of a gas-phase Pt 2 dimer.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3684891