Experiences with integrated concepts for the control of Haemonchus contortus in sheep and goats in the United States

The generally warm, moist environmental conditions in the southern United States (U.S.) are ideal for survival and growth of the egg and larval stages of Haemonchus contortus and other gastrointestinal nematodes (GIN) of sheep and goats. Consequently, infection with GIN is the greatest threat to eco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary parasitology 2012-05, Vol.186 (1-2), p.28-37
Hauptverfasser: Terrill, Thomas H., Miller, James E., Burke, Joan M., Mosjidis, Jorge A., Kaplan, Ray M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generally warm, moist environmental conditions in the southern United States (U.S.) are ideal for survival and growth of the egg and larval stages of Haemonchus contortus and other gastrointestinal nematodes (GIN) of sheep and goats. Consequently, infection with GIN is the greatest threat to economic small ruminant production in this region. With anthelmintic resistance now reaching epidemic proportions in small ruminants in the U.S., non-chemical control alternatives are critically needed. The Southern Consortium for Small Ruminant Parasite Control (SCSRPC) was formed in response to this crisis and over the last decade has successfully validated the use of several novel control technologies, including FAMACHA© for the implementation of targeted selective treatments (TST), copper oxide wire particles (COWP), nematode-trapping fungi, and grazing or feeding hay of the high-tannin perennial legume sericea lespedeza [Lespedeza cuneata (Dum.-Cours. G. Don)]. Producer attitudes toward GIN control in the U.S. have been shifting away from exclusive dependence upon anthelmintics toward more sustainable, integrated systems of parasite control. Some novel control technologies have been readily adopted by producers in combination with appropriate diagnostic tools, such as FAMACHA©. Others techniques are still being developed, and will be available for producer use as they are validated. Although new drugs will likely be available to U.S. goat and sheep producers in the future, these will also be subject to development of anthelmintic resistance. Therefore, the adoption and implementation of sustainable GIN control principles will remain important. With emerging markets for grass-fed or organic livestock, there will continue to be a critical need for research and outreach on development and on-farm application of integrated GIN control systems for small ruminants in the U.S. for the foreseeable future.
ISSN:0304-4017
1873-2550
DOI:10.1016/j.vetpar.2011.11.043