Partial Biodistribution and Pharmacokinetics of Isoniazid and Rifabutin Following Pulmonary Delivery of Inhalable Microparticles to Rhesus Macaques

Dry powder inhalations (DPI) of microparticles containing isoniazid (INH) and rifabutin (RFB) are under preclinical development for use in pulmonary tuberculosis. Microparticles containing 0.25, 2.5, or 25 mg of each drug were administered daily for 90 days to rhesus macaques (n = 4/group). Single i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2012-04, Vol.9 (4), p.1011-1016
Hauptverfasser: Verma, Rahul Kumar, Mukker, Jatinder Kaur, Singh, Ravi Shankar Prasad, Kumar, Kaushlendra, Verma, Priya Ranjan Prasad, Misra, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dry powder inhalations (DPI) of microparticles containing isoniazid (INH) and rifabutin (RFB) are under preclinical development for use in pulmonary tuberculosis. Microparticles containing 0.25, 2.5, or 25 mg of each drug were administered daily for 90 days to rhesus macaques (n = 4/group). Single inhalations or intravenous (i.v.) doses were administered to separate groups. Drugs in serum, alveolar macrophages, and organ homogenates were assayed by high-performance liquid chromatography (HPLC). The RFB/INH in the lungs (101.10 ± 12.90/101.07 ± 8.09 μg/g of tissue) was twice that of the liver concentrations (60.22 ± 04.97/52.08 ± 4.62 μg/g) and four times that of the kidneys (22.89 ± 05.22/30.25 ± 3.71 μg/g). Pharmacokinetic parameters indicated the operation of flip-flop kinetics. Thus, the elimination half-life (t 1/2) of RFB and INH was calculated as 8.01 ± 0.5 and 2.49 ± 0.23 h, respectively, upon intravenous (iv) administration, and as 13.8 ± 0.8 and 10.43 ± 0.77 h following a single inhalation; or 13.36 ± 3.51 and 10.13 ± 3.01 at a presumed steady state (day 60 of dosing). Targeted and sustained drug delivery to nonhuman primate lungs and alveolar macrophages was demonstrated. Flip-flop serum pharmacokinetics was observed, and nonlinearity in some pharmacokinetic parameters at logarithmic dose increments was indicated. The results suggest that human patients would benefit through improvement in biodistribution following DPI.
ISSN:1543-8384
1543-8392
DOI:10.1021/mp300043f