Segmentation of interest region in medical volume images using geometric deformable model

Abstract In this paper, we present a new segmentation method using the level set framework for medical volume images. The method was implemented using the surface evolution principle based on the geometric deformable model and the level set theory. And, the speed function in the level set approach c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2012-05, Vol.42 (5), p.523-537
Hauptverfasser: Lee, Myungeun, Cho, Wanhyun, Kim, Sunworl, Park, Soonyoung, Kim, Jong Hyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this paper, we present a new segmentation method using the level set framework for medical volume images. The method was implemented using the surface evolution principle based on the geometric deformable model and the level set theory. And, the speed function in the level set approach consists of a hybrid combination of three integral measures derived from the calculus of variation principle. The terms are defined as robust alignment, active region, and smoothing. These terms can help to obtain the precise surface of the target object and prevent the boundary leakage problem. The proposed method has been tested on synthetic and various medical volume images with normal tissue and tumor regions in order to evaluate its performance on visual and quantitative data. The quantitative validation of the proposed segmentation is shown with higher Jaccard's measure score (72.52%–94.17%) and lower Hausdorff distance (1.2654 mm–3.1527 mm) than the other methods such as mean speed (67.67%–93.36% and 1.3361 mm–3.4463 mm), mean-variance speed (63.44%–94.72% and 1.3361 mm–3.4616 mm), and edge-based speed (0.76%–42.44% and 3.8010 mm–6.5389 mm). The experimental results confirm that the effectiveness and performance of our method is excellent compared with traditional approaches.
ISSN:0010-4825
1879-0534
DOI:10.1016/j.compbiomed.2012.01.005