LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate

Cobalt-containing metal oxides [perovskites (LaCoO(3), NdCoO(3), YCoO(3), La(0.7)Sr(0.3)CoO(3)), spinel (Co(3)O(4)) and wolframite (CoWO(4))] have been examined as catalysts for photocatalytic water oxidation with Na(2)S(2)O(8) and [Ru(bpy)(3)](2+) as an electron acceptor and a photosensitizer, resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2012-04, Vol.14 (16), p.5753-5760
Hauptverfasser: YAMADA, Yusuke, YANO, Kentaro, DACHAO HONG, FUKUZUMI, Shunichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cobalt-containing metal oxides [perovskites (LaCoO(3), NdCoO(3), YCoO(3), La(0.7)Sr(0.3)CoO(3)), spinel (Co(3)O(4)) and wolframite (CoWO(4))] have been examined as catalysts for photocatalytic water oxidation with Na(2)S(2)O(8) and [Ru(bpy)(3)](2+) as an electron acceptor and a photosensitizer, respectively. Catalysts with the perovskite structure exhibited higher catalytic activity as compared with the catalysts with the spinel and wolframite structures. LaCoO(3), which stabilizes Co(III) species in the perovskite structure, exhibited the highest catalytic activity in the photocatalytic water oxidation compared with CoWO(4), Co(3)O(4) and La(0.7)Sr(0.3)CoO(3) which contain Co(II) or Co(IV) species in the matrices. The high catalytic reactivity of LaCoO(3) possessing perovskite structure was maintained in NdCoO(3) and YCoO(3) which exclusively contain Co(III) species. Thus, the catalytic activity of Co ions can be controlled by the additional metal ions, which leads to development of highly reactive and robust catalysts for the photocatalytic water oxidation.
ISSN:1463-9076
1463-9084
DOI:10.1039/c2cp00022a